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Th eavior of ajultiplicity

*1Idepen dent ot-Linding

Scheme in the Jesence of Error.
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Abstract K.

King [11 and Kioustelidis (2] have pro's a derivative free scheme ~('y

that permits root finding methods, such as the secant method to

preserve high order convergence when the root in question is~ multiple.

In this note it is shown that the scheme can fail to achieve the

maximum accuracy that is attainable at a fixed precision of computation.

4 This work was supported in part by the Office of Naval Research

under contract No. N00014-76-C-0391.



The Behavior of a Multiplicity

Independent Root-finding

Scheme in the Presence of Error

G. W. Stewart

The problem considered in this note is that of finding a

root of the equation

f(x) - 0,

where f is a real valued function of a real variable. For simplicity

we shall assume that f has a sufficient number of continuous derivatives

for the purposes at hand.

There are any number of iterations, such as Nawton's method or
*

the secant method, that converge to a zero x of f from sufficiently

near starting points. If x is a simple zero of f, i.e. if f'(x*) # 0,
4 *
then many of these iterations converge superlinearly; however, if x

is a multiple zero, the convergence is usually linear and can be quite

slow. One way of circumventing this difficulty, an approach which goes

back at least to Schr~der (3], is to replace f by a function g that

is constructed from f in such a way that x is a simple zero of g.

A classical choice is g - f/f'. Recently King [1] and Kioustelidis [2]

htAccession Forhave proposed the function I I '&
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g ~I(x) ffW
f(x + f(x)l- f(x)

where 8 and its derivatives are defined at x by continuity. It
.

is easy to show that if x is a zero of multiplicity p of f then

g(x ) 0 and

* 1
p

so that x is indeed a simple zero of g.

This technique is appealing when it is used with a method like

the secant method, which does not require derivatives; at the cost of

one extra function evaluation per iteration it promises rapid conver-

gence, free from considerations of multiplicity. However, it is important

to realize that the technique has a hidden cost. When f is evaluated

with error, an iteration based on it will not get as near the zero as

a more conventional method. It is the purpose of this note to show why

this is so.

The general situation is adequately illustrated by the function

f(x) - cxp ,

which has a zero of multiplicity p at zero. Suppose that in practice

we cannot evaluate f(x) exactly but instead must work with a perturbed

value
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f(x) - f(x) + e(x),

where the error function e(x) satisfies

Ie(x)j S e

Ibw in the interval

1

(2) f pcj
Lcc

the value of If(x) I is not greater than e. Hence the value of

may be positive or negative at any point in the interval; i.e. any point

in (2) is a potential zero. Wilkinson 14] has shown that if e(x)

is noisy, as it will be when it is due to rounding error, then an itera-

tive method like Newton's method or the secant method will converge

until it gets into the interval (2), after which it will behave erati-

cally.

The same considerations apply to the function g; however, we

must now consider not only how accurately f is evaluated but also how

accurately the denominator in (1) is evaluated. Even if the first

function evaluation is done without error, we have for this denominator

f[x + f(x)] - f(x)

- c[x +cxP] p - cx p +e[x +f(x)I

22p-1[ + p(p-1) xP-l +. + etx +f(x)]

=_p2 ""
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As x approaches zero, the true value of the denominator becomes

2 2p-1effectively c x , and this must be larger than e to insure that

it is at all accurate. In other words one should not expect further

convergence once the interval
1 1

(3) 2P- ' 2 2-

has been entered. For fixed c and sufficiently small e, the interval

(3) is always larger than (2).

A numerical experiment, performed on a Texas Instruments Program-

mable 59 calculator, will illustrate the above considerations. The function

f was taken to be

f(x) - (x-l) - x - 3x 2 + 3x - 1,

which has a triple zero at one. Since the TI 59 carries thirteen decimal

digits in its computations, if Horer's method is used to evaluate f

near one, we may expect an error on the order of 1013. Taking e - 10

and c - 1, we get for the interval (2) (appropriately translated)

(4) 1 + [-0.000046, +0.000046]

and for (3)

(5) 1 + [-0.0025, +0.0025]

The first interval is significatly smaller than the second.



Table 1 shows the results of applying the secant method, starting

from x 1.4 and x2 - 1.2, first to f and then to g. The con-

vergence for f is slow but steady; the thirtieth iterate is just out-

side the interval (4), and at that point f evaluates exactly to zero.

On the other hand the fourth iterate with the function g is in the

interval (5). The iteration could not be carried further because the

denominator in (1) evaluated exactly to zero.

The conclusion is that for multiple zeros the g-iteration can

fail to achieve the maximum accuracy that is attainable at a fixed pre-

cision of computation. On the other hand, until the g-iteration enters

its region of ineffectiveness, its behavior is quite good. In the example,

it required the f-iteration eighteen function evaluations to produce a

solution as accurate as the g-iteration produced in six. Perhaps a

reasonable compromise is to use the g-iteration until it breaks down

and then, if further accuracy is required, shift to more refined techniques.
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Table I

f- and g-Iterations for
f(x) - x3 - 3x2 + 3x 1

Iterate f g

1 1.4000000 1.4000000

2 1.2000000 1.2000000

3 1.1714286 0.9438925

4 1.1228346 1.0016196

5 1.0945533 ---

18 1.0024305

19 1.0018347

20 1.0013850

27 1.0001933

28 1.0001485

29 1.0001150

30 1.0000478
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